6,147 research outputs found

    Are tornado-like magnetic structures able to support solar prominence plasma?

    Get PDF
    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.Comment: Accepted for publication in ApJ

    The Faint Young Sun Paradox: An Observational Test of an Alternative Solar Model

    Get PDF
    We report the results of deep observations at radio (3.6 cm) wavelengths of the nearby solar‐type star π^01 Ursa Majoris with the Very Large Array (VLA) intended to test an alternative theory of solar luminosity evolution. The standard model predicts a solar luminosity only 75% of the present value and surface temperatures below freezing on Earth and Mars at 4 Ga, seemingly in conflict with geologic evidence for liquid water on these planets. An alternative model invokes a compensatory mass loss through a declining solar wind that results in a more consistent early luminosity. The free‐free emission from an enhanced wind around nearby young Sun‐like stars should be detectable at microwave frequencies. Our observations of π^01 UMa, a 300 million year‐old solar‐mass star, place an upper limit on the mass loss rate of 4–5 × 10^(−11) M_⊙ yr^(−1). Total mass loss from such a star over 4 Gyr would be less than 6%. If this star is indeed an analog of the early Sun, it casts doubt on the alternative model as a solution to the faint young Sun paradox, particularly for Mars

    Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor

    Get PDF
    On-resin aggregation and incomplete amide bond formation are major challenges for solid-phase peptide synthesis that are difficult to be monitored in real-time. Incorporation of a pressure-based variable bed flow reactor into an automated solid-phase peptide synthesizer permitted real-time monitoring of resin swelling to determine amino acid coupling efficiency and on-resin aggregation
    corecore